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I. a) 1)   Let 
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  and  on [a,b] then prove that 

        (i) 
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on [a,b] and (ii) 
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 2)   Define step function and prove: If a < s < b, 
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on [a,b] and 
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      function, then prove that 
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    b)  1) Let 
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, n = 1,2,3,… . Suppose that 
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is convergent and {sn} is a sequence of distinct 
            numbers in (a,b). Let 
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. Let  f  be continuous on [a,b] then prove that 
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   2) Let 
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on [a,b]. If f is a bounded real  

       function on [a,b] then prove that 
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     3) Let 
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on [a,b] for 
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, then prove that F is continuous on [a,b].  

  If F is continuous at some point 
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, then prove that F is differentiable at xo and 
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    4) State and prove the fundamental theorem of Calculus and deduce the following result:

Suppose F and G are differentiable functions on [a,b], 
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II. a) 1)  Let 
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exists then prove that it is unique. 
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    2)   Define a convex set and prove: Suppose that 
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 maps a convex set 
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 is 
          differentiable on E and there exists a constant M such  that 
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b) 1) When do you  say a function 
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is continously differentiable? Let
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 if and only if the partial derivatives Djfi exists and are  

          continuous on E for 
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                OR
2) a)  State and prove the Contraction principle.

    b)  Let C(X) denote the set of all continuous, complex valued, bounded functions onX. Prove that C(X) 
          is a complete metric space. 




 
(5+10)

III. a)1) Prove that every converging sequence is a Cauchy’s sequence. Is the converse true?

        OR


[image: image33.wmf]2) If {f} is a sequence of continuous fu
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    then f is continuous on E. Is the co

nverse true? If the converse is not true

, assert

    under what conditions the c

®

onverse also becomes true.              

                    (5)


b) 1) State and prove the Cauchy criterion for uniform convergence.

2) Suppose {fn} is a sequence of differentiable functions on [a,b]. Suppose that {fn(x0)} converges uniformly on [a,b] then prove that {fn} converges uniformly on [a,b] to some function f and 
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        OR

3) State and prove Stone-Weierstrass theorem.
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    IV. a)1) Is the trignometric series 
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a Fourier series? Justify your answer. 

       OR

2) Define a Gamma function and state the three properties that characterize Gamma function completely.
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b)1) State and prove the Parseval’s theorem.

2) If f is continuous (with period 
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) and if  
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then prove that there is a trignometric polynomial P such that 
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        OR

3) State and prove the Dirichlet’s necessary and sufficient condition for a Fourier series to converge to a sum s.
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V. a)1) Write a note on Lagrange’s polynomial.

            OR  
2) Write a note on Chebyshev polynomial.
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b)1)  Let f be a continuous function on [a,b] and assume that T is a polynomial of degree 
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 n that best approximates f on [a,b] relative to the maximum norm. Let R(x) = f(x) – T(x) denote the error in this approximation and let 
[image: image40.wmf]DfT

=-

. Then prove 

i) If D =  0 the function R is identically zero on [a,b].

ii) If D>0, the function R has at least (n+1) changes of sign on [a,b].

(15)

   OR

2)  If f(x) has m continuous derivatives and no point occurs in the sequence xo, x1, x2, …, xn more than (m + 1) times then prove that there exists exactly one polynomial Pn(x) of degree 
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n which agrees with f(x) at xo, x1, x2, …, xn. 
3) Let P n+1 (x) = x n+1+ Q(x), where Q(x) is a polynomial of degree 
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